Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Immun Inflamm Dis ; 10(7): e639, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1894597

RESUMEN

INTRODUCTION: Prominently accountable for the upsurge of COVID-19 cases as the world attempts to recover from the previous two waves, Omicron has further threatened the conventional therapeutic approaches. The lack of extensive research regarding Omicron has raised the need to establish correlations to understand this variant by structural comparisons. Here, we evaluate, correlate, and compare its genomic sequences through an immunoinformatic approach to understand its epidemiological characteristics and responses to existing drugs. METHODS: We reconstructed the phylogenetic tree and compared the mutational spectrum. We analyzed the mutations that occurred in the Omicron variant and correlated how these mutations affect infectivity and pathogenicity. Then, we studied how mutations in the receptor-binding domain affect its interaction with host factors through molecular docking. Finally, we evaluated the drug efficacy against the main protease of the Omicron through molecular docking and validated the docking results with molecular dynamics simulation. RESULTS: Phylogenetic and mutational analysis revealed the Omicron variant is similar to the highly infectious B.1.620 variant, while mutations within the prominent proteins are hypothesized to alter its pathogenicity. Moreover, docking evaluations revealed significant differences in binding affinity with human receptors, angiotensin-converting enzyme 2 and NRP1. Surprisingly, most of the tested drugs were proven to be effective. Nirmatrelvir, 13b, and Lopinavir displayed increased effectiveness against Omicron. CONCLUSION: Omicron variant may be originated from the highly infectious B.1.620 variant, while it was less pathogenic due to the mutations in the prominent proteins. Nirmatrelvir, 13b, and Lopinavir would be the most effective, compared to other promising drugs that were proven effective.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Interacciones Huésped-Patógeno/genética , Humanos , Lopinavir , Simulación del Acoplamiento Molecular , Filogenia , SARS-CoV-2/genética , Virulencia/genética
2.
Brain Sci ; 12(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1742327

RESUMEN

The cerebellum governs motor coordination and motor learning. Infection with external microorganisms, such as viruses, bacteria, and fungi, induces the release and production of inflammatory mediators, which drive acute cerebellar inflammation. The clinical observation of acute cerebellitis is associated with the emergence of cerebellar ataxia. In our animal model of the acute inflammation of the cerebellar cortex, animals did not show any ataxia but hyperexcitability in the cerebellar cortex and depression-like behaviors. In contrast, animal models with neurodegeneration of the cerebellar Purkinje cells and hypoexcitability of the neurons show cerebellar ataxia. The suppression of the Ca2+-activated K+ channels in vivo is associated with a type of ataxia. Therefore, there is a gap in our interpretation between the very early phase of cerebellar inflammation and the emergence of cerebellar ataxia. In this review, we discuss the hypothesized scenario concerning the emergence of cerebellar ataxia. First, compared with genetically induced cerebellar ataxias, we introduce infection and inflammation in the cerebellum via aberrant immunity and glial responses. Especially, we focus on infections with cytomegalovirus, influenza virus, dengue virus, and SARS-CoV-2, potential relevance to mitochondrial DNA, and autoimmunity in infection. Second, we review neurophysiological modulation (intrinsic excitability, excitatory, and inhibitory synaptic transmission) by inflammatory mediators and aberrant immunity. Next, we discuss the cerebellar circuit dysfunction (presumably, via maintaining the homeostatic property). Lastly, we propose the mechanism of the cerebellar ataxia and possible treatments for the ataxia in the cerebellar inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA